
FEATURES

- Low Standby-Current Consumption of 10 μA Max
- I²C to Parallel-Port Expander
- Open-Drain Interrupt Output

- Compatible With Most Microcontrollers
- Latched Outputs With High-Current Drive Capability for Directly Driving LEDs
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II

NC - No internal connection

DESCRIPTION/ORDERING INFORMATION

This 8-bit input/output (I/O) expander for the two-line bidirectional bus (I^2C) is designed for 2.5-V to 6-V V_{CC} operation.

The PCF8574A provides general-purpose remote I/O expansion for most microcontroller families via the I²C interface [serial clock (SCL), serial data (SDA)].

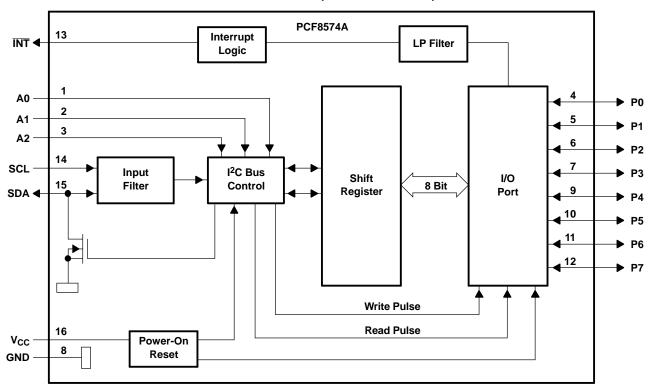
The device features an 8-bit quasi-bidirectional I/O port (P0–P7), including latched outputs with high-current drive capability for directly driving LEDs. Each quasi-bidirectional I/O can be used as an input or output without the use of a data-direction control signal. At power on, the I/Os are high. In this mode, only a current source to V_{CC} is active. An additional strong pullup to V_{CC} allows fast rising edges into heavily loaded outputs. This device turns on when an output is written high and is switched off by the negative edge of SCL. The I/Os should be high before being used as inputs.

ORDERING INFORMATION

T _A	PAC	CKAGE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING		
	QFN – RGY	Tape and reel	PCF8574ARGYR	PF574A		
	PDIP – N	Tube	PCF8574AN	PCF8574AN		
-40°C to 85°C	SOIC - DW	Tube	PCF8574ADW	- PCF8574A		
-40 C to 65 C	SOIC - DW	Tape and reel	PCF8574ADWR	PCF6574A		
	TSSOP - PW	Tape and reel	PCF8574APWR	PF574A		
	TVSOP - DGV	Tape and reel	PCF8574ADGVR	PF574A		

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

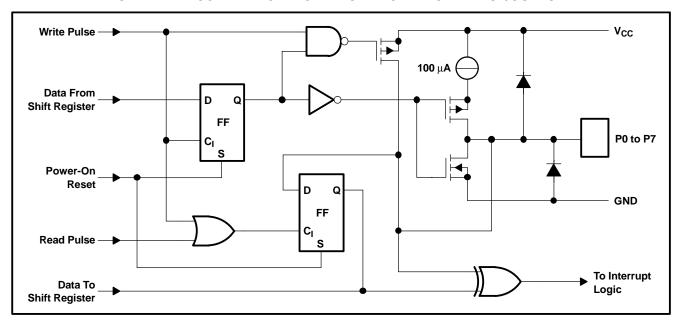
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



DESCRIPTION/ORDERING INFORMATION (CONTINUED)

The PCF8574A provides an open-drain output $(\overline{\text{INT}})$ that can be connected to the interrupt input of a microcontroller. An interrupt is generated by any rising or falling edge of the port inputs in the input mode. After time, t_{iv} , $\overline{\text{INT}}$ is valid. Resetting and reactivating the interrupt circuit is achieved when data on the port is changed to the original setting or data is read from, or written to, the port that generated the interrupt. Resetting occurs in the read mode at the acknowledge bit after the rising edge of the SCL signal, or in the write mode at the acknowledge bit after the high-to-low transition of the SCL signal. Interrupts that occur during the acknowledge clock pulse can be lost (or be very short) due to the resetting of the interrupt during this pulse. Each change of the I/Os after resetting is detected and, after the next rising clock edge, is transmitted as $\overline{\text{INT}}$. Reading from, or writing to, another device does not affect the interrupt circuit.

By sending an interrupt signal on this line, the remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via the I²C bus. Therefore, the PCF8574A can remain a simple slave device.


LOGIC DIAGRAM (POSITIVE LOGIC)

Pin numbers shown are for the DW and N packages.

SIMPLIFIED SCHEMATIC DIAGRAM OF EACH P-PORT INPUT/OUTPUT

I²C Interface

 I^2C communication with this device is initiated by a master sending a start condition, a high-to-low transition on the SDA I/O while the SCL input is high. After the start condition, the device address byte is sent, most-significant bit (MSB) first, including the data direction bit (R/ \overline{W}). This device does not respond to the general call address. After receiving the valid address byte, this device responds with an acknowledge, a low on the SDA I/O during the high of the acknowledge-related clock pulse. The address inputs (A0–A2) of the slave device must not be changed between the start and the stop conditions.

The data byte follows the address acknowledge. If the R/\overline{W} bit is high, the data from this device are the values read from the P port. If the R/\overline{W} bit is low, the data are from the master, to be output to the P port. The data byte is followed by an acknowledge sent from this device. If other data bytes are sent from the master, following the acknowledge, they are ignored by this device. Data are output only if complete bytes are received and acknowledged. The output data will be valid at time, t_{pv} , after the low-to-high transition of SCL and during the clock cycle for the acknowledge.

A stop condition, a low-to-high transition on the SDA I/O while the SCL input is high, is sent by the master.

Interface Definition

DVTE	BIT										
BYTE	7 (MSB)	6	5	4	3	2	1	0 (LSB)			
I ² C slave address	L	Н	Н	Н	A2	A1	AO	R/W			
I/O data bus	P7	P6	P5	P4	P3	P2	P1	P0			

Address Reference

	INPUTS		120 DUC CLAVE ADDRECC
A2	A1	A0	I ² C BUS SLAVE ADDRESS
L	L	L	56 (decimal), 38 (hexadecimal)
L	L	Н	57 (decimal), 39 (hexadecimal)
L	Н	L	58 (decimal), 3A (hexadecimal)
L	Н	Н	59 (decimal), 3B (hexadecimal)
Н	L	L	60 (decimal), 3C (hexadecimal)
Н	L	Н	61 (decimal), 3D (hexadecimal)
Н	Н	L	62 (decimal), 3E (hexadecimal)
Н	Н	Н	63 (decimal), 3F (hexadecimal)

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT		
V _{CC}	Supply voltage range		-0.5	7	V		
VI	Input voltage range ⁽²⁾		-0.5	$V_{CC} + 0.5$	V		
Vo	Output voltage range ⁽²⁾		-0.5	V _{CC} + 0.5	V		
I _{IK}	Input clamp current	V _I < 0		-20	mA		
I _{OK}	Output clamp current	V _O < 0		-20	mA		
I _{OK}	Input/output clamp current	$V_O < 0$ or $V_O > V_{CC}$		±400	μΑ		
I _{OL}	Continuous output low current	$V_O = 0$ to V_{CC}		50	mA		
I _{OH}	Continuous output high current	$V_O = 0$ to V_{CC}		-4	mA		
	Continuous current through V _{CC} or GND			±100	mA		
		DGV package ⁽³⁾		92			
		DW package ⁽³⁾		57			
θ_{JA}	Package thermal impedance	N package ⁽³⁾		67	°C/W		
		PW package ⁽³⁾		83			
		RGY package ⁽⁴⁾		37			
T _{stg}	Storage temperature range		-65	150	°C		

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions

		MIN	MAX	UNIT
V_{CC}	Supply voltage	2.5	6	V
V_{IH}	High-level input voltage	$0.7 \times V_{CC}$	$V_{CC} + 0.5$	V
V_{IL}	Low-level input voltage	-0.5	$0.3 \times V_{CC}$	V
I _{OH}	High-level output current		-1	mA
I _{OL}	Low-level output current		25	mA
T _A	Operating free-air temperature	-40	85	°C

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-5.

SCPS069D-JULY 2001-REVISED OCTOBER 2005

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IK}	Input diode clamp voltage	$I_I = -18 \text{ mA}$	2.5 V to 6 V	-1.2			V
V_{POR}	Power-on reset voltage (2)	$V_I = V_{CC}$ or GND, $I_O = 0$	6 V		1.3	2.4	V
I _{OH}	P port	$V_O = GND$	2.5 V to 6 V	30		300	μΑ
I _{OHT}	P-port transient pullup current	High during acknowledge, V _{OH} = GND	2.5 V		-1		mA
	SDA	$V_0 = 0.4 \text{ V}$	2.5 V to 6 V	3			
I_{OL}	P port	V _O = 1 V	5 V	10	25		mA
	INT	V _O = 0.4 V	2.5 V to 6 V	1.6			
	SCL, SDA					±5	
I	ĪNT	$V_I = V_{CC}$ or GND	2.5 V to 6 V			±5	μΑ
	A0, A1, A2					±5	
I _{IHL}	P port	$V_I \ge V_{CC}$ or $V_I \le GND$	2.5 V to 6 V			±400	μΑ
	Operating mode	$V_I = V_{CC}$ or GND, $I_O = 0$, $f_{SCL} = 100 \text{ kHz}$	6 V		40	100	^
I _{CC}	Standby mode	$V_I = V_{CC}$ or GND, $I_O = 0$	0 V		2.5	10	μА
Ci	SCL	$V_I = V_{CC}$ or GND	2.5 V to 6 V		1.5	7	pF
C	SDA	V – V or CND	2.5 V to 6 V		3	7	pF
C _{io}	P port	$V_{IO} = V_{CC}$ or GND	2.5 V 10 6 V		4	10	рг

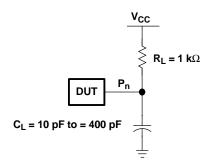
I²C Interface Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

			MIN	MAX	UNIT
f _{scl}	I ² C clock frequency			100	kHz
t _{sch}	I ² C clock high time		4		μs
t _{scl}	I ² C clock low time		4.7		μs
t _{sp}	I ² C spike time			100	ns
t _{sds}	I ² C serial-data setup time		250		ns
t _{sdh}	I ² C serial-data hold time		0		ns
t _{icr}	I ² C input rise time			1	μs
t _{icf}	I ² C input fall time			0.3	μs
t _{ocf}	I ² C output fall time (10-pF to 400-pF bus)			300	ns
t _{buf}	I ² C bus free time between stop and start		4.7		μs
t _{sts}	I ² C start or repeated start condition setup		4.7		μs
t _{sth}	I ² C start or repeated start condition hold		4		μs
t _{sps}	I ² C stop-condition setup		4		μs
t _{vd}	Valid-data time	SCL low to SDA output valid		3.4	μs
C _b	I ² C bus capacitive load			400	pF

All typical values are at V_{CC} = 5 V, T_A = 25°C. The power-on reset circuit resets the I²C-bus logic with V_{CC} < V_{POR} and sets all I/Os to logic high (with current source to V_{CC}).

PCF8574A REMOTE 8-BIT I/O EXPANDER FOR I²C BUS


Switching Characteristics

over recommended operating free-air temperature range, $C_L \le 100 \text{ pF}$ (unless otherwise noted) (see Figure 2)

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	MAX	UNIT
t _{pv}	Output data valid	SCL	P port		4	μs
t _{su}	Input data setup time	P port	SCL	0		μs
t _h	Input data hold time	P port	SCL	4		μs
t _{iv}	Interrupt valid time	P port	ĪNT		4	μs
t _{ir}	Interrupt reset delay time	SCL	ĪNT		4	μs

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

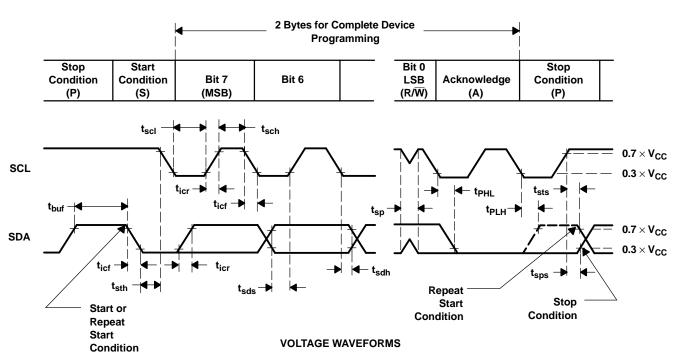


Figure 1. I²C Interface Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION (continued)

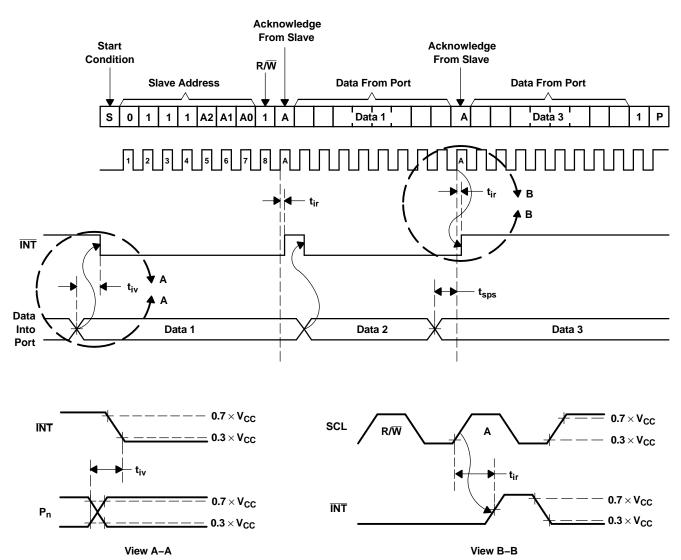


Figure 2. Interrupt Voltage Waveforms

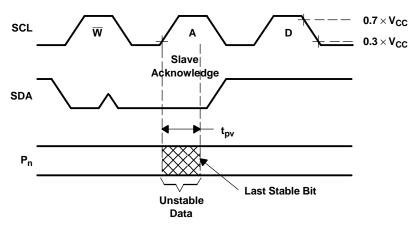


Figure 3. I²C Write Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION (continued)

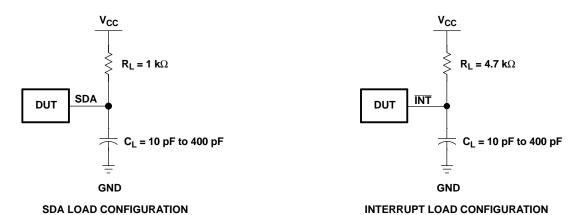


Figure 4. Load Circuits

31-Jan-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
PCF8574ADGVR	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PF574A	Samples
PCF8574ADGVRE4	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PF574A	Samples
PCF8574ADGVRG4	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PF574A	Samples
PCF8574ADW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PCF8574A	Samples
PCF8574ADWE4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PCF8574A	Samples
PCF8574ADWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PCF8574A	Sample
PCF8574ADWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PCF8574A	Sample
PCF8574ADWRE4	ACTIVE	SOIC	DW	16		TBD	Call TI	Call TI	-40 to 85	PCF8574A	Sample
PCF8574ADWRG4	OBSOLETE	SOIC	DW	16		TBD	Call TI	Call TI	-40 to 85	PCF8574A	
PCF8574AN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	PCF8574AN	Sample
PCF8574ANE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	PCF8574AN	Sample
PCF8574APW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PF574A	Sample
PCF8574APWE4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PF574A	Sample
PCF8574APWG4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PF574A	Sample
PCF8574APWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PF574A	Sample
PCF8574APWRE4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PF574A	Sample
PCF8574APWRG4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PF574A	Sample

PACKAGE OPTION ADDENDUM

31-Jan-2013

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
PCF8574ARGYR	ACTIVE	VQFN	RGY	20	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PF574A	Samples
PCF8574ARGYRG4	ACTIVE	VQFN	RGY	20	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PF574A	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

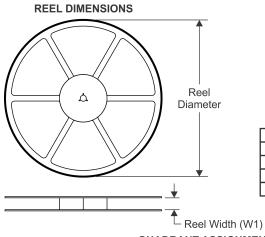
TBD: The Pb-Free/Green conversion plan has not been defined.

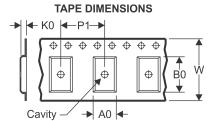
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

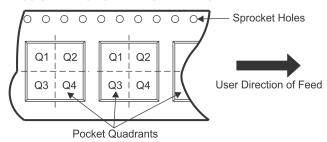
(4) Only one of markings shown within the brackets will appear on the physical device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

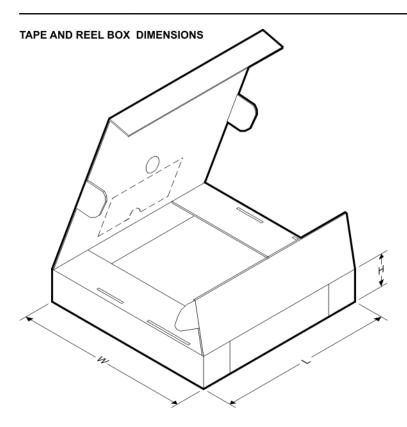

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Jan-2013


TAPE AND REEL INFORMATION

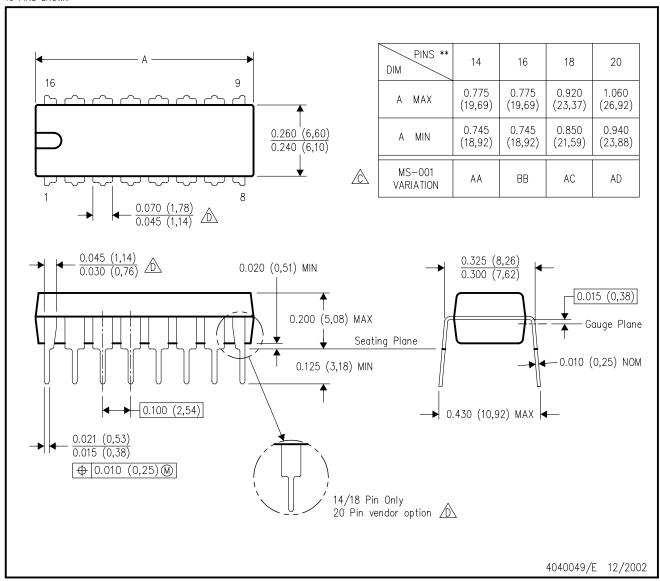
_		
		Dimension designed to accommodate the component width
		Dimension designed to accommodate the component length
		Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
Г	P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All ulmensions are nomina												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
PCF8574ADGVR	TVSOP	DGV	20	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
PCF8574ADWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
PCF8574APWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
PCF8574ARGYR	VQFN	RGY	20	3000	330.0	12.4	3.8	4.8	1.6	8.0	12.0	Q1

www.ti.com 26-Jan-2013

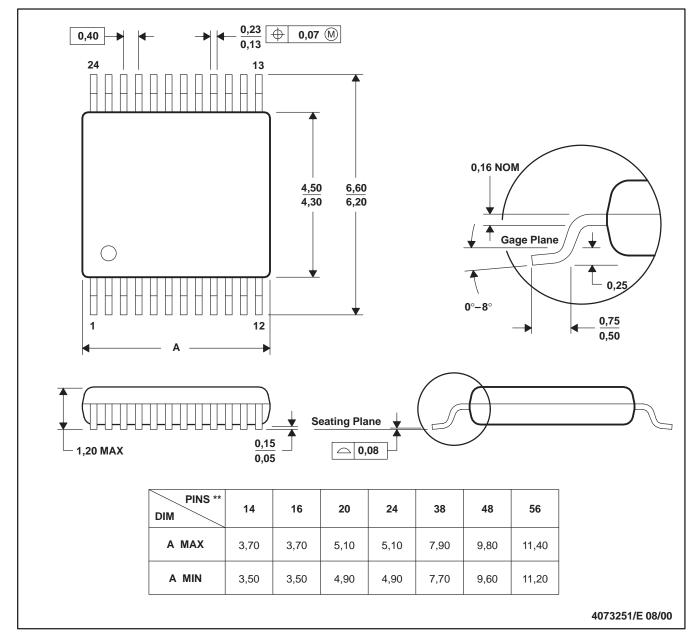

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
PCF8574ADGVR	TVSOP	DGV	20	2000	367.0	367.0	35.0
PCF8574ADWR	SOIC	DW	16	2000	366.0	364.0	50.0
PCF8574APWR	TSSOP	PW	20	2000	367.0	367.0	38.0
PCF8574ARGYR	VQFN	RGY	20	3000	367.0	367.0	35.0

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

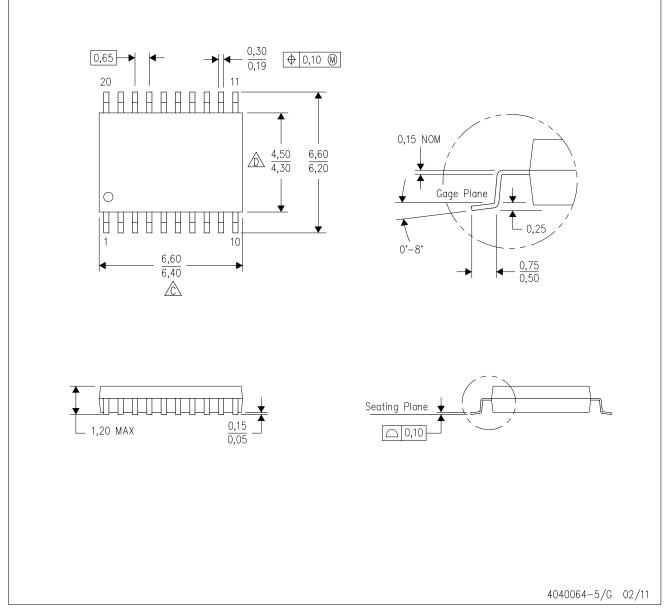
16 PINS SHOWN


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

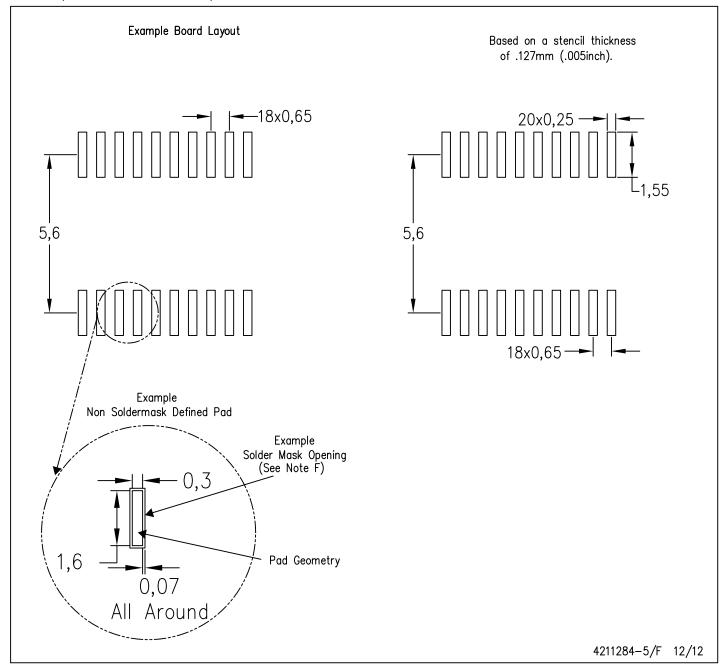

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

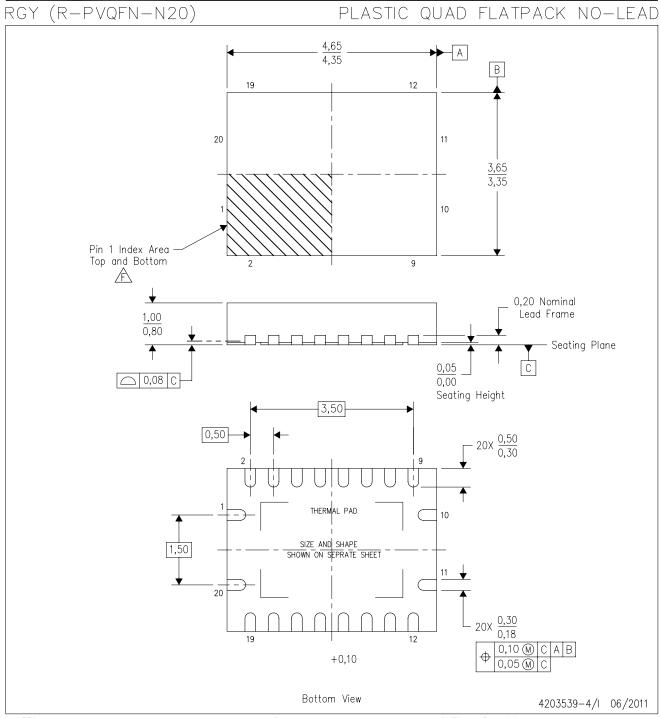
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194 PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153


PW (R-PDSO-G20)

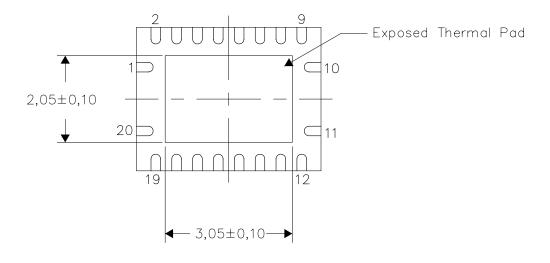
PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature.
- G. Package complies to JEDEC MO-241 variation BA.

RGY (R-PVQFN-N20)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

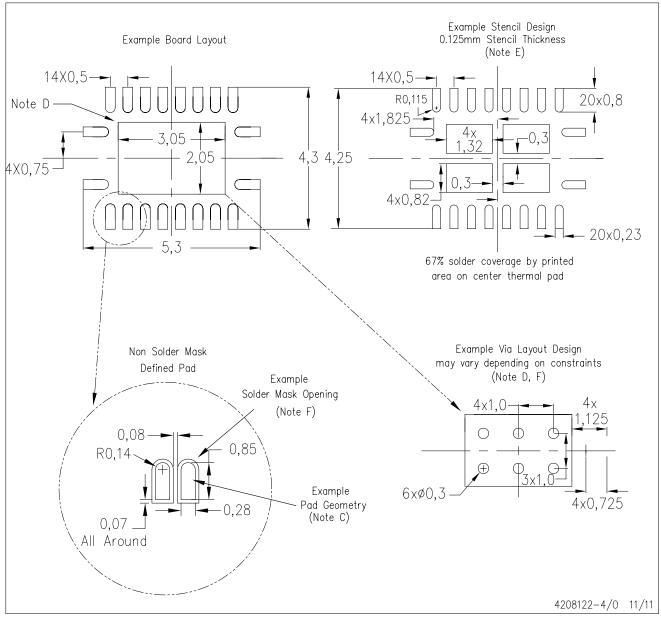
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

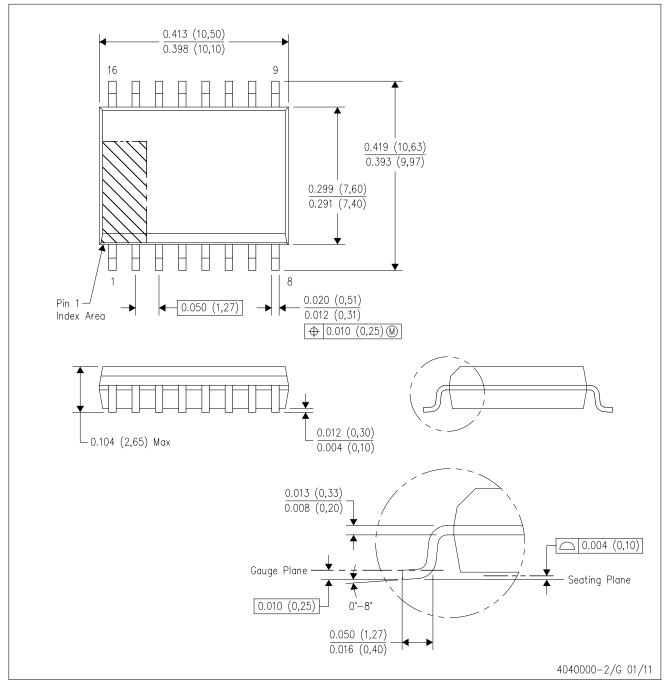
Exposed Thermal Pad Dimensions


4206353-4/0 11/11

NOTE: All linear dimensions are in millimeters

RGY (R-PVQFN-N20)

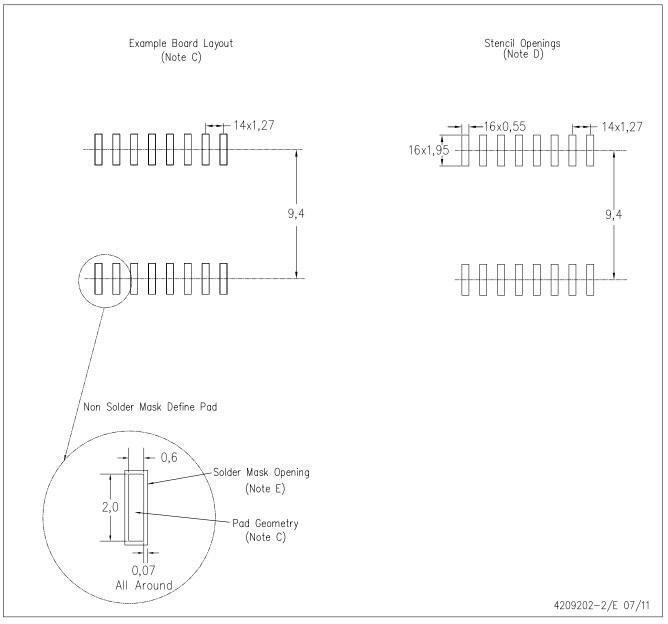
PLASTIC QUAD FLATPACK NO-LEAD



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AA.

DW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC—7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Texas Instruments:

 PCF8574ADWR
 PCF8574APWR
 PCF8574AN
 PCF8574ANE4
 PCF8574ADGVR
 PCF8574ADGVRE4

 PCF8574ADW
 PCF8574ADWE4
 PCF8574ADWRE4
 PCF8574ADWRE4
 PCF8574ADWRG4
 PCF8574ADWRG4
 PCF8574ARGYR
 PCF8574ARGYRG4
 PCF8574APWG4

 PCF8574ADGVRG4
 PCF8574ADGVRG4
 PCF8574APWRG4
 PCF8574ARGYRG4
 PCF8574APWG4